

Fijihosting.com Introduction to JavaScript page 1

Introduction to JavaScript

JavaScript's a great language. We love it. It may not have the speed or power of Java or C, or the tight
integration of ActiveX, but on the plus side it's interpreted (no messing about with compilers), fast to load,
easy to debug and it embeds itself neatly into your web page.

Most important of all, it's easy to learn. Hopefully if you're fairly new to the language, these tips will
help get you started. Even seasoned JavaScript coders may learn a thing or two from these tips - you never
know!

This tip shows you how to get started with JavaScript. We'll look at how to embed JavaScript in your
web page, and how JavaScript talks to your web browser. We'll illustrate these points by building a simple
program to display an alert box when the page is first loaded.

Where in my web page do I put JavaScript?

The simple answer is - anywhere you like! Though most folks like to put it near the top of the page in one
chunk, usually below the <body> tag or between the <head></head> section, for readability and ease of
debugging. Putting it in the <head></head> section has the advantage that all of the code will be loaded
before the page, which is more secure.

Regardless of where you place it, you must enclose it within the following HTML tags:

��������	
��
�����
�
���������

�����

�

��	
������������������

�

����������������

Why? Well, <script language="JavaScript"> tells the browser to interpret what follows as JavaScript,
while the comment markers (<!-- // -->) make the JavaScript invisible to older browsers that don't
support the language.

How does JavaScript make the browser do stuff?

JavaScript talks to your browser through objects and methods. An object is something like a window, a
frame, or an image - the things that make up your browser and the web pages it displays. A method is
something that an object can do. For example, a window can be opened or closed.

As an example, we're going to make your browser display an alert box when your page loads. Click
here to open the example page and see the alert box. Here's the function that made that extremely witty
box appear:

������������ 	��������

�������!�

���������������������"
	������� #$%&�� #$%&��'#()*+)��

���������������+)�&,$��& %-+ %.�-+/�����0�

Fijihosting.com Introduction to JavaScript page 2

�������1�

See? It's easy! We're calling the alert method of the window object, to make the alert box appear. The
method takes one argument - the text to display in the box. Couldn't be simpler.

But how does it come up automatically, when the page is first viewed? That's done with a little trick
called the onLoad event handler. In the standard <body> tag at the top of the page, we add this code:

�2����2���	����3444444����#�
������� 	��������

This tells the browser to execute the JavaScript function showAlert() when the page is first loaded. (It will
also be executed when you click Reload/Refresh.)

Congratulations - if you made it this far, you now understand the building blocks of JavaScript! Now
have a browse through the other tutorials in this section. Start writing your own code. There are lots of
helpful books available on the subject, and some great websites too! Good luck.

Events and Event Handlers

In this tutorial we'll introduce JavaScript's system of handling events, and describe some commonly used
event handlers and the neat tricks you can do with them.

What Are Events?

Events allow you to write JavaScript code that reacts to certain situations. Examples of events include:

• The user clicking the mouse button
• The Web page loading
• A form field being changed

Event Handlers

To allow you to run your bits of code when these events occur, JavaScript provides us with event handlers.
All the event handlers in JavaScript start with the word on, and each event handler deals with a certain type
of event. Here's a list of all the event handlers in JavaScript, along with the objects they apply to and the
events that trigger them:

Event
Handler

Applies To: Triggered When:

onAbort Image The loading of the image is cancelled.

onBlur Button, Checkbox, FileUpload, Layer, Password,
Radio, Reset, Select, Submit, Text, TextArea,
Window

The object in question loses focus (e.g.
by clicking outside it or pressing the TAB
key).

onChange FileUpload, Select, Text, TextArea The data in the form element is changed
by the user.

onClick Button, Document, Checkbox, Link, Radio,
Reset, Submit

The object is clicked on.

onDblClick Document, Link The object is double-clicked on.

onDragDrop Window An icon is dragged and dropped into the
browser.

onError Image, Window A JavaScript error occurs.

onFocus Button, Checkbox, FileUpload, Layer, Password,
Radio Reset Select Submit Text TextArea

The object in question gains focus (e.g.
by clicking on it or pressing the TAB key).

Fijihosting.com Introduction to JavaScript page 3

Window

onKeyDown Document, Image, Link, TextArea The user presses a key.

onKeyPress Document, Image, Link, TextArea The user presses or holds down a key.

onKeyUp Document, Image, Link, TextArea The user releases a key.

onLoad Image, Window The whole page has finished loading.

onMouseDown Button, Document, Link The user presses a mouse button.

onMouseMove None The user moves the mouse.

onMouseOut Image (NOT NS4), Link The user moves the mouse away from
the object.

onMouseOver Image (NOT NS4), Link The user moves the mouse over the
object.

onMouseUp Button, Document, Link The user releases a mouse button.

onMove Window The user moves the browser window or
frame.

onReset Form The user clicks the form's Reset button.

onResize Window The user resizes the browser window or
frame.

onSelect Text, Textarea The user selects text within the field.

onSubmit Form The user clicks the form's Submit button.

onUnload Window The user leaves the page.

Using an Event Handler

To use an event handler, you usually place the event handler name within the HTML tag of the object you
want to work with, followed by ="SomeJavaScriptCode", where SomeJavaScriptCode is the JavaScript
you would like to execute when the event occurs.
For example:

�������������25�����
5����	��65���

�
	���7	��6�8������7	��6��
	����9&�
�6�:��9����

The Event Object

The Event object is created automatically whenever an event occurs. There are a number of properties
associated with the Event object that can be queried to provide additional information about the event:

Event
Property

Description

event.data Used by the onDragDrop event. Returns an array of URL's of dropped objects.

event.height Stores the height of the window or frame containing the object connected with the event.

event.modifiers Returns a string listing any modifier keys that were held down during a key or mouse
event. The modifier key values are: ALT_MASK, CONTROL_MASK, SHIFT_MASK and
META_MASK.

Fijihosting.com Introduction to JavaScript page 4

event.pageX
event.pageY

These properties hold the X and Y pixel coordinates of the cursor relative to the page, at
the time of the event.

event.screenX
event.screenY

These properties hold the X and Y pixel coordinates of the cursor relative to the page, at
the time of the event.

event.target Returns a string representing the object that initiated the event.

event.type Returns a string representing the type of the event (keypress, click, etc).

event.which Returns a number representing the mouse button that was pressed (1=left, 2=middle,
3=right) or the ASCII code of the key that was pressed.

event.width Stores the width of the window or frame containing the object connected with the event.

event.x
event.y

These properties hold the X and Y pixel coordinates of the cursor relative to the layer
connected with the event or, for the onResize event, the width and height of the object
after it was resized. (You can also use event.layerX and event.layerY, which do the
same thing.)

Some Common Event Handlers

In this section, we'll look at a few of the more commonly used event handlers, and examine how they can be
used.

onChange

onChange is commonly used to validate form fields (see our tutorial on Form Validation with JavaScript) or
to otherwise perform an action when a form field's value has been altered by the user. The event handler is
triggered when the user changes the field then clicks outside the field or uses the TAB key (i.e. the object
loses focus).

Example

This example code ensures that you type in both your first and your last names. It will bring up an alert box
and refocus the text box field if you only type one word into the text box.

;	�
��������������
5�<���������������=���

�
5������>�
5�����7�
�����
	��
��4��	���������

�

��������	
��
�����
�
���������

�

���������
	��
��4��	�������	��
5����

!�

��������������	��
5�"�
	����??�

�����������	��
5�"�
	�"5
����������������

Fijihosting.com Introduction to JavaScript page 5

����!�

��������
	�������;	�
�������������������
���	
����
5������0�

�����������	��
5�"��������0�

����1�

1�

�

����������

Please enter your name:

onClick

The onClick handler is executed when the user clicks with the mouse on the object in question. Because you
can use it on many types of objects, from buttons through to checkboxes through to links, it's a great way
to create interactive Web pages based on JavaScript.

Example

In this example, an alert box is displayed when you click on the link below.

�
�������3����7	��6��
	����9&�
�6��9���7	��6�8����
��

Click Me!

onFocus

onFocus is executed whenever the specified object gains focus. This usually happens when the user clicks
on the object with the mouse button, or moves to the object using the TAB key. onFocus can be used on
most form elements.

Example

This example text box contains the prompt Please enter your email address that is cleared once the text
box has focus.

��������������=����
5����5
�	>
��������

��@���AB���
	���;	�
��������������5
�	�
��������

��4���������"�
	��99���

Please enter your email address

Fijihosting.com Introduction to JavaScript page 6

onKeyPress

You can use onKeyPress to determine when a key on the keyboard has been pressed. This is useful for
allowing keyboard shortcuts in your forms and for providing interactivity and games.

Example

This example uses the onKeyPress event handler for the Window object to determine when a key was
pressed. In addition, it uses the which property of the Event object to determine the ASCII code of the key
that was pressed, and then displays the pressed key in a text box. If event.which is undefined it uses
event.keyCode instead (Internet Explorer uses event.keyCode instead of event.which).

���5	��

�

�2������'��;������������>6��������"���������

�

����5�5��������������
5���5�>���5���

�

&���6���������������
�<�

��������������=����
5���6��>����	
�����@���C���

�

�����5��

�

��������	
��
�����
�
���������

�

������������>6��������>6�����

!�

��������������>6�����

����!�

�����������>6����������"6��7���0�

����1�

Fijihosting.com Introduction to JavaScript page 7

�

�������5���"5�>���5"6��>����	
�"�
	��

������������"���57�
�7���������>6����0�

1�

�

����������

�

��2�����

�

����5	��

Click here to try it out in a new window!

onLoad

The onLoad event handler is triggered when the page has finished loading. Common uses of onLoad
include the dreaded pop-up advertisement windows, and to start other actions such as animations or timers
once the whole page has finished loading.

Example

This simple example displays an alert box when the page has finished loading:

���5	��

�2������#�
�����
	����9&�
�6���������������5���
���9����

�

8��;
���

�

��2�����

����5	��

Click here to try it out in a new window!

Fijihosting.com Introduction to JavaScript page 8

onMouseOut, onMouseOver

The classic use of these two event handlers is for JavaScript rollover images (images, such as buttons, that
change when you move your mouse over them). We have a tutorial on just this topic called Rollover Buttons
with JavaScript.

Example

Here's a simple example that alters the value of a text box depending on whether the mouse pointer is over
a link or not.

����5��

�

��������������=����
5�����
�����
	���)���+��������#��6���

�

�2���

�

�
�����������8���+�������
��"�
	��9+��������#��69��

��8���+�����
��"�
	��9)���+��������#��69��8����

����8����+����8����
��

�

�����5��

Not Over the

Move the Mouse Over Me!

onSubmit

The onSubmit event handler, which works only with the Form object, is commonly used to validate the
form before it's sent to the server. In fact we have a whole tutorial on this topic, called Form Validation with
JavaScript.

Example

This example asks you to confirm whether you want to submit the form or not when you click on the button.
It returns true to the event handler if the form is to be submiited, and false if the submission is to be
cancelled.

����5����25����������������5�9 ���:�����D9����

Fijihosting.com Introduction to JavaScript page 9

�

�������������25�����
5����25�����
	����25�����

�

�����5��

Submit

Form Validation with JavaScript

This tutorial will show you how to create a JavaScript-enabled form that checks whether a user has filled in
the form correctly before it's sent to the server. This is called form validation. First we'll explain why form
validation is a useful thing, and then build up a simple example form, explaining things as we go along. At
the end, there's a little exercise to keep you busy too!

What is form validation?

Form validation is the process of checking that a form has been filled in correctly before it is processed. For
example, if your form has a box for the user to type their email address, you might want your form handler
to check that they've filled in their address before you deal with the rest of the form.

There are two main methods for validating forms: server-side (using CGI scripts, ASP, etc), and
client-side (usually done using JavaScript). Server-side validation is more secure but often more tricky to
code, whereas client-side (JavaScript) validation is easier to do and quicker too (the browser doesn't have to
connect to the server to validate the form, so the user finds out instantly if they've missed out that required
field!).

Client-side form validation (usually with JavaScript embedded in the Web page)

Fijihosting.com Introduction to JavaScript page 10

Server-side form validation (usually performed by a CGI or ASP script)

In this tutorial we'll build a simple form with client-side JavaScript validation. You can then adapt this form
to your own requirements.

A simple form with validation

Let's build a simple form with a validation script. The form will include one text field called Your Name, and
a submit button. Our validation script will ensure that the user enters their name before the form is sent to
the server.

Click Here to view the form in action. Try pressing the Send Details button without filling anything
in the Your Name field.

Click Here to open the source for this form in a separate window, so that you can refer to it
throughout the tutorial.

You can see that the page consists of a JavaScript function called validate_form () that performs
the form validation, followed by the form itself. Let's look at the form first.

The form

The first part of the form is the form tag:

����5��
5�������
��>���5��5�������������

�����������<�����"�	
���"��5�����2����

���������
	��E
�
�����������
��>��5�	�"�����

���25�����������
	��
��>���5����0���

The form is given a name of "contact_form". This is so that we can reference the form by name from our
JavaScript validation function.

The form uses the post method to send the data off to a dummy CGI script on ELATED.com's server
that thanks the user. In reality, you would of course send the data to your own CGI script, ASP page, etc
(e.g. a form mailer).

Finally, the form tag includes an onSubmit attribute to call our JavaScript validation function,
validate_form (), when the Send Details button is pressed. The return allows us to return the value
true or false from our function to the browser, where true means "carry on and send the form to the
server", and false means "don't send the form". This means that we can prevent the form from being sent if
the user hasn't filled it in properly.

The rest of the form prompts the user to enter their name into a form field called contact name,
and adds a Send Details submit button:

��F�;	�
���$�����:���)
5����F��

Fijihosting.com Introduction to JavaScript page 11

�

���:���)
5�<���������������=����
5�������
��>�
5��������

����������������25�����
5����������
	��������.��
�	��������

�

�����5��

Now let's take a look at the JavaScript form validation function that does the actual work of checking our
form.

The validate_form () function

The form validation function, validate_form (), is embedded in the head tag near the top of the page:

��������	
��
�����
�
���������

�

�����

�

���������
	��
��>���5�����

!�

�����
	��������0�

�

������������5���"����
��>���5"����
��>�
5�"�
	����������

����!�

��������
	�������;	�
�����		��������9:���)
5�9�2�="���0�

���������
	������
	��0�

����1�

�

�����������
	��0�

1�

Fijihosting.com Introduction to JavaScript page 12

�

������

�

����������

The first line (<script language="JavaScript">) tells the browser that we are writing some JavaScript,
and the HTML comment (<!--) in the second line hides the script from older browsers that don't understand
JavaScript.

Next we start our validate_form () function, then set a variable called valid to the value true:

�

���������
	��
��>���5�����

!�

�����
	��������0�

We use this valid variable to keep track of whether our form has been filled out correctly. If one of our
checks fails, we'll set valid to false so that the form won't be sent.

The next 5 lines check the value of our contact_name field to make sure it has been filled in:

������������5���"����
��>���5"����
��>�
5�"�
	����������

����!�

��������
	�������;	�
�����		��������9:���)
5�9�2�="���0�

���������
	������
	��0�

����1�

If the field is empty, the user is warned with an alert box, and the variable valid is set to false.
Next, we return the value of our valid variable to the onSubmit attribute (described above). If the value is
true then the form will be sent to the server; if it's false then the form will not be sent:

�����������
	��0�

Finally, we finish our validate_form () function with a closing brace, and end our HTML comment and
script tag:

1�

�

������

Fijihosting.com Introduction to JavaScript page 13

�

����������

That's all there is to simple JavaScript form validation! Our example is very simple as it only checks one
field. Let's expand this example with a more complex function that checks lots of form fields. We'll also look
at how to check other types of fields, such as checkboxes, radio buttons and drop-down lists.

A more complex form

Let's look at a more complex validated form with some different types of form fields.
Click Here to view the form in action. Try pressing the Send Details button without filling in the

form and see what happens.
Click Here to open the source for this form in a separate window, so that you can refer to it as we

talk you through.
Like our previous example, this page has a form called contact_form and a function called

validate_form. In addition to the previous text field, the form has radio buttons, a drop-down list and a
checkbox.

The validate_form () function now has 3 extra checks, one for each of our new fields.

Validating radio buttons

After the contact_name text box has been checked, the gender radio buttons are validated:

��������������5���"����
��>���5"������GBH"����6�������
	�����

����??������5���"����
��>���5"������GFH"����6�������
	�������

����!�

��������
	�������;	�
��������������*�����<�8
	�����4�5
	����0�

���������
	������
	��0�

����1�

This code checks to see whether either of the radio buttons (Male or Female) have been clicked. If neither
have been clicked (checked == false), the user is alerted and valid is set to false.

Validating drop-down lists

Next the Age drop-down list is checked to see if the user has selected an option. In the form, we named the
first option in the drop-down list "Please Select an Option. Our JavaScript can then check which option was
selected when the user submitted the form. If the first option is selected, we know the user has not selected
a "real" option and can alert them:

������������5���"����
��>���5"
��"��	�����(���=����B���

����!�

��������
	�������;	�
�����	�������� ��"���0�

Fijihosting.com Introduction to JavaScript page 14

���������
	������
	��0�

����1�

Note that the values for selectedIndex start at zero (for the first option).

Validating checkboxes

Finally, the Terms and Conditions checkbox is validated. We want to the user to agree to our imaginary
Terms and Conditions before they send the form, so we'll check to make sure they've clicked the checkbox:

������������5���"����
��>���5"���5�"����6�������
	�����

����!�

��������
	�������;	�
�������6�����&��5��?�7����������2�="���0�

���������
	������
	��0�

����1�

�

Because we set our valid variable to false in any one of the above cases, if one or more of our checks fail,
the form will not be sent to the server. If the user has not completed more than one field, then they will see
an alert box appear for each field that is missing.

Now you know how to write a form validation script that can handle multiple form fields, including
text boxes, radio buttons, drop-down lists and check boxes!

One point to note about JavaScript validation is that it can always be circumvented by the user
disabling JavaScript in their browser, so for secure validation you'll need to write your validating code in
your server-side scripts. However, for day-to-day use JavaScript is a quick and easy way to check over your
forms before they're sent to your server.

An Exercise: One Field at a Time Validation

Our example script works by validating all the form fields at once. This can be a bit confusing for the user,
especially if they've missed out more than one field, as they will get lots of alert boxes appearing and they
might forget which fields they need to fill in!

As an exercise, try modifying the script to only prompt the user one field at a time. For example, if
they miss out the Name and Gender fields and press Send Details, it will only prompt them for the Name
field initially. Then, after they fill in the Name field and press Send Details again, it will prompt them for
the Gender field.

As a finishing touch, try making the script move the cursor to the field that needs filling in each time
(Hint: use the focus() method to do this).

Opening Windows with JavaScript

One of the most useful (and quite possibly the most abused) features of JavaScript is its ability to
manipulate browser windows. It can be very handy for creating a pop-up navigation window, or for making
snappy websites with no menus or button bars (see one of our pagekits, filmstar, for an example of the
latter).

Multiple pop-up windows can be a real pain, especially now that certain free web space companies
are getting in on the act as a method of advertising, so go easy on them. A good rule of thumb is: if you're
opening two new windows, you're opening one too many!

Fijihosting.com Introduction to JavaScript page 15

What does a pop-up window look like?

Click here...

Splendid! How do I do one?

It's really simple. Here's the function that made that window appear:

������������/��-�����

�������!�

���������������)��/������������"�����92��"��5	9I�92��9I�

���������������9������FJBI�������KB9�0�

�������1�

This creates a new window called "boo", which displays the HTML page "boo.html", and is 180 pixels wide
and 50 pixels high.
The function openWinBoo() is called when you click on the link above. The code for the link looks like this:

7	��6��
�������E
�
������<����/��-������������
��

The javascript: bit tells the browser to call a JavaScript function - in this case, our openWinBoo()
function.

Let's take a closer look at our function. The last argument between the parentheses specifies how
our new window will look. In our example, we've just specified the width and height with
'width=180,height=50'. However, there are many properties of the window that are under our control.

Property Meaning

directories The "what's new/what's cool" bar (Netscape only!)

location The box allowing the user to type a URL

menubar The menu bar (File, Edit, etc.)

resizable The user can resize the new window by dragging

scrollbars The new window has scrollbars

toolbar The toolbar (Back, Forward, etc.)

Each of these properties can have the value of yes (the feature will appear in the new window) or no (the
new window will have that feature disabled).

An important point to note about these properties is that they mustn't have spaces between them.
For example, 'width=180,height=50' will work, but 'width=80, height=50' won't.
For example, this function creates a new window with just the menu and the URL entry box:

������������/��8��L�	���

�������!�

���������������)��/������������"�����95��>�	"��5	9I�95��>�	9I�

���������������9������ABBI�������FBBI	��
��������I5��2
�����9�0�

Fijihosting.com Introduction to JavaScript page 16

�������1�

Click here to see it in action.
Now you know how to make a new window appear, and how to make that window look the way you

want it. Try playing with different properties in the window.open method and enjoy the power of
JavaScript!

Rollover Buttons with JavaScript

These days every man and his dog is using "rollover", or "mouse-sensitive" buttons on their site. Usually
these are achieved through JavaScript, although it's possible to do the same thing in DHTML, Java or (perish
the thought) ActiveX. JavaScript is the simplest one to understand, though. If you don't know what I'm on
about, move your mouse over this baby:

Get the idea? Note: You need to be using Netscape 3 or greater, or IE 4 or greater, to see rollovers, as only
these newer browsers have the ability to change images in JavaScript.

Where to use 'em

Rollover images are great whenever you want to make it obvious that the user should click on them (for
example, buttons and menus).

Where not to use 'em

In the bath.

OK wise guy - how's it done?

Well it all hangs around JavaScript's Image class. Let's look at how we did the rollover button above, to
help us understand this class. Click here to view the HTML source of this page in a separate window, so you
can follow through the JavaScript it contains.

The first thing we need to do is create two images - one for the "normal" button, and one for the "active"
(rollover) button. We do this with the new Image constructor, which simply takes two values - the image
width and height - and makes the image object:

��>���������(5
�����MMI�MM��00�

��>����������(5
�����MMI�MM��0�

We've chosen the image files images/eg_on.gif and images/eg_off.gif. In this example, the file names
are the same as the image object names, but they don't have to be! It's just easier to follow, that's all.

Changing the images

Now, our example on this page only has one rollover button; however, often you'll want several on one
page, as in a menu. To make this easier, we've created a couple of functions to handle the actual image
changing. That way, you can just call the function for each of your buttons, without having to duplicate lots
of code.
Here are those functions, called button_on and button_off:

��������2����>������5�)
5����

�������!�

Fijihosting.com Introduction to JavaScript page 17

�����������������������������M��NN��������������A����

�����������!�

���������������2�+������
	����5�)
5��O��>��"������0�

������������������5����G�5�)
5�H"������2�+�0�

�����������1�

�������1�

�

��������2����>�������5�)
5����

�������!�

�����������������������������M��NN��������������A����

�����������!�

���������������2�+�������
	����5�)
5��O��>���"������0�

������������������5����G�5�)
5�H"������2�+��0�

�����������1�

�������1�

Note that these functions rely on your Image names ending in _off (for the normal image), or _on (for the
rolled-over image). That's just our convention; change it to something else if you like, but remember to
change it both in the two functions above, and in your new Image statements at the top of the script!

The two functions are nearly identical. Both take the Image object specified by imgName, which is
the name we give the button in the HTML (in this case eg), and replace its source with either the _off or the
_on image's source.

I'm confused! What are all these different images?

There are three Image objects at work here:

eg The actual image in the HTML page (see below); initially it points to images/eg_off.gif

eg_off The "off" version of the image (which also points to images/eg_off.gif)

eg_on The "on", or rolled-over, version of the image, which points to images/eg_on.gif

The functions button_off and button_on simply replace the image pointed to by eg with the images
pointed to by eg_off and eg_on respectively. Easy-peasy!

Browser sniffing

Fijihosting.com Introduction to JavaScript page 18

Note also the use of the version variable - this is defined right at the start of our script, and is used to
determine which browser we are running. This is often referred to as sniffer code:

�����2������)
5������)����
����??�2������P������M���

����������������M�0�

�����2������)
5������8���������(��������$=�	������??�2������P�����A���

����������������A�0�

The HTML bit

The last piece of the puzzle is to make the call to our JavaScript functions from within the HTML itself. To do
this, we need to have an active link (an <a href> tag) around our rollover button. As our button doesn't
need to link anywhere, we link it to # (an empty anchor).

�
�������3��

��5�������2����>����9��9�0������������

��5���������2����>���9��9�0��������������5��

������5
������>���"�����2�������B���������MM��

��������MM���
5���������
��

The two attributes onmouseout and onmouseover tell the browser to execute the JavaScript within the
quotes (" ") when the mouse moves out of or over the button respectively. Within the quotes, we make a
call to the appropriate image-changing function (button_off or button_on) that we defined above.

Last - but by no means least - the button is given a name using the attribute name="eg". This
name is very important, as it is used by the button_on and button_off functions to determine which
image to change. Putting the name in the HTML implicitly tells the browser to create a new Image object, in
this case called eg. When using many rollovers in one page, make sure you use a different name for each
button!

Go for it, my son!

Now you should be able to take the above code and use it to make your own rollover images. You can make
as many rollovers as you like in one page - just remember to give each one a unique name, and to call the
functions button_off and button_on with that name.

JavaScript and Forms

The FORM tag is usually used to create forms for sending to CGI scripts or other server-based software, but
there's a lot that can be done at the browser end as well - with JavaScript! You can validate the data
entered by the user before it's sent to the CGI script (this saves time and bandwidth); you can get the user
to talk to your JavaScript program through form fields; or you can even design a menu system using forms
and JavaScript. In fact, we're going to show you how to do just that.

A menu using JavaScript and forms

Fijihosting.com Introduction to JavaScript page 19

To see this in action, take a look at a page from one of our PageKits, filmstar. In the top left of the
window you'll see a drop-down menu. When you pick a page from the menu, it'll take you straight to that
page. Cool, huh? Now this is how we did it...

First, we make an array containing the URL's of all the pages in our drop-down menu. An array is just a
list of objects - in this case, URL's. To make this easier we write a function to build the array:

��������2�	� ��
����

!�

���������
��
���2�	� ��
�"
��5����0�

���������������B0���
"	�����0��OO��

��������!�

��������������������G�H���
G�H0�

��������1�

������������"	��������
"	�����0�

1�

Then we call that function, passing it the URL's we want in the array:

�
���	�F�������2�	� ��
����I�

�
2��"��5	�I�

����"��5	�I�

�������	��"��5	�I�

������"��5	�I�

�	��6�"��5	�I�

�5
�	��<��Q��������"��
�����D�2E��������������0�

We're naming our array urls1, so that if we wanted more than one drop-down menu in the page, we could
easily add more (urls2, urls3 etc). This is also catered for in the next function, go, which loads the new
pages into the window when the user selects them from the menu:

Go, go, go! Let's see some action...

�����������������I��5I������

!�

Fijihosting.com Introduction to JavaScript page 20

� ���������"��	�����(���=0�

� ���������B��

� !�

� � �
���	�����
	���	���O��5�O��G�H���

� � ���������

� � !�

� � � ����/�������	�0�

� � 1��	���

� � !�

� � � 	��
����"��������	0�

� � 1�

� 1�

1�

The go function takes 3 arguments. The first one, which, is the object whose event handler called the
function - in this case, the drop down menu. This is passed so that the function knows where to find the
menu object! The second argument, num, refers to the array of URL's we mentioned above; in this case
there's only one array, urls1, so we'll pass the value 1 to the function. The third argument, win, is a
boolean value (either true or false) - true means that a new window should be created for the selected
page, while false means that the selected page should be opened in the current window.

Now the function itself should be fairly self-explanatory. The first line, n=which.selectedIndex,
gets the value of the selectedIndex property from the object which (our drop down menu) - in other
words, n now holds the position of the selected item in the menu (a number between 1 and 7). n is then
used to find the URL to display, by looking it up in our urls1 array. Finally the URL is displayed, either in a
new window (if win was true) or in the same window.

The HTML bit

The last step is to call the go function from the drop-down menu itself. Here is the HTML for the menu:

����5��
5������5F���

�

���	�����
5���5��F����7�
������������I�FI��
	������

������������	�5�����
����

Fijihosting.com Introduction to JavaScript page 21

��������
2���

����������
�9�����D�

��������������	���

��������������

��������	��6��

��������5�
���	�����

����	�����

�

�����5��

The select tag generates a drop-down menu. As you can see, this tag has an event handler onChange,
which is called when the user picks an item from the menu. We use this handler to call our function go with
the reference to the drop-down menu object (this), the URL array we're using (there's only one, so 1) and
whether we want the links to open in a new window (false, or no)

That's all there is to it! You can take the above code and change the menu text and URL's to make
menus for your own sites. It's a great way to make a menu if screen real-estate is at a premium. Plus it
teaches you a bit about using JavaScript with forms!

(we can’t remember from which source we found this tutorial – it is definitely not made by us)

